On the operator equation A + B = Sigma

نویسنده

  • Anna Kolesárová
چکیده

In the paper the equation of the form A+B = P , w h e r e A and B are binary aggregation operators, is investigated. A necessary and suu-cient condition for binary aggregation operators to be solutions of this equation, is proved. Already known solutions in some special classes of aggrega-tion operators, e.g., in the class of triangular norms and conorms, in the class of quasi{arithmetic means or uninorms and nullnorms, are discussed from a new point of view.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the relations between the point spectrum of A and invertibility of I + f(A)B

Let A be a bounded linear operator on a Banach space X. We investigate the conditions of existing rank-one operator B such that I+f(A)B is invertible for every analytic function f on sigma(A). Also we compare the invariant subspaces of f(A)B and B. This work is motivated by an operator method on the Banach space ell^2 for solving some PDEs which is extended to general operator space under some ...

متن کامل

‎A matrix LSQR algorithm for solving constrained linear operator equations

In this work‎, ‎an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$‎ ‎and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$‎ ‎where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$‎, ‎$mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$‎, ‎$ma...

متن کامل

Compact weighted Frobenius-Perron operators and their spectra

In this note we characterize the compact weighted Frobenius-Perron operator $p$ on $L^1(Sigma)$ and determine their spectra. We also show that every weakly compact weighted Frobenius-Perron operator on $L^1(Sigma)$ is compact.

متن کامل

Generalized sigma-derivation on Banach algebras

Let $mathcal{A}$ be a Banach algebra and $mathcal{M}$ be a Banach $mathcal{A}$-bimodule. We say that a linear mapping $delta:mathcal{A} rightarrow mathcal{M}$ is a generalized $sigma$-derivation whenever there exists a $sigma$-derivation $d:mathcal{A} rightarrow mathcal{M}$ such that $delta(ab) = delta(a)sigma(b) + sigma(a)d(b)$, for all $a,b in mathcal{A}$. Giving some facts concerning general...

متن کامل

Bi-concave Functions Defined by Al-Oboudi Differential Operator

The purpose of the present paper is to introduce a class $D_{Sigma ;delta }^{n}C_{0}(alpha )$ of bi-concave functions defined by Al-Oboudi differential operator. We find estimates on the Taylor-Maclaurin coefficients $leftvert a_{2}rightvert $ and $leftvert a_{3}rightvert$ for functions in this class. Several consequences of these results are also pointed out in the form of corollaries.

متن کامل

Lie ternary $(sigma,tau,xi)$--derivations on Banach ternary algebras

Let $A$ be a Banach ternary algebra over a scalar field $Bbb R$ or $Bbb C$ and $X$ be a ternary Banach $A$--module. Let $sigma,tau$ and $xi$ be linear mappings on $A$, a linear mapping $D:(A,[~]_A)to (X,[~]_X)$ is called a Lie ternary $(sigma,tau,xi)$--derivation, if $$D([a,b,c])=[[D(a)bc]_X]_{(sigma,tau,xi)}-[[D(c)ba]_X]_{(sigma,tau,xi)}$$ for all $a,b,cin A$, where $[abc]_{(sigma,tau,xi)}=ata...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003